HANDS-ON WITH SIMULATION TOOLS:

FALSTAD CIRCUIT SIMULATOR ALGODOO

Dr. Uma Sharma **Consultant Academic CIET-NCERT**

Falstad's Circuit Simulator

A circuit simulator is a great way to learn about circuits, test new designs,

or troubleshoot a design prototype that has failed on the breadboard.

It offer a range of features, from simple interactive models to complex system dynamics simulations. A collection of free online simulations for physics, math, and engineering.

cuits, test new designs, d on the breadboard.

https://www.falstad.com/circuit

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

> See the GNU General Public License for more details. For details of licensing see http://www.gnu.org/licenses/. Source code (Paul):https://github.com/pfalstad/circuitjs1 Source code (lain): https://github.com/sharpie7/circuitjs1

Important features

This tool can be used to demonstrate many concepts of grade 10th and 12th like...

- Resistor in series and parallel
- Ohm's law
- AC circuits
- Logic Gates and many more.

More applets

It yields results in seconds!

- 1. File menu: It allows you to load or save circuit description files. You can also export a circuit description as a link so you can share a circuit with others.
- 2. Reset: This button resets the circuit to a reasonable state.
- 3. Run/Stop: This button allows you to stop the simulation.
- 4. Simulation Speed: This slider allows you to adjust the speed of the simulation.
- 5. Current Speed: This slider lets you adjust the speed of the dots, in case the currents are so weak (or strong) that the dots are moving too slowly (or too quickly).
- 6. Circuits menu: It can be used to view some interesting pre-defined circuits. Once a circuit is selected, you may modify it all you want.

Ð

Ð

Circuit Simulator Applet

You can still use the original Java version. More acknowledgements in the about box. java@falstad.com. free counters.

Falstad's CircuitJS

File, Edit, Draw, Scopes, Options, Circuits. Reset. RUN / Stop ...

Directions

... line! - the bottom two wires of a transmission line must always ...

Electronics Demonstrations

Ohm's Law - Resistors - Capacitor - NPN Transistor (Bipolar) - ...

Resistors

If there are multiple current paths, you may have resistors in ...

Ohm's Law

The resister of right has 10 times as much resistance as it will

https://falstad.com/circuit/circuitjs.html

Tools for developing Circuit simulator

File	Edit	Draw	Scopes	Options	Circuits			
		Add \	Nire		w	Res	set	
		Add I	Resistor		r			
		Pass	ive Compon	ents	► I		I / Ston	
		Input	s and Sourc	es	•	Add Ground	g –	
		Outp	uts and Labe	els	•	Add Voltage Source (2-terminal)	v	əd
		Activ	e Componer	nts	•	Add A/C Voltage Source (2-terminal)	D-	->
		Activ	e Building Bl	ocks	•	Add Voltage Source (1-terminal)	V	
		Logic	; Gates, Inpu	it and Output	•	Add A/C Voltage Source (1-terminal)	d	_ \
		Digita	al Chips		•	Add Square Wave Source (1-terminal)	- E	
		Analo	og and Hybri	d Chips	•	Add Clock	he	SS
	4	Subc	ircuits		•	Add A/C Sweep		
		Drag			•	Add Variable Voltage		
		✓ Select	t/Drag Sel	(space or SI	nift-drag)	Add Antenna	it:	
						Add AM Source		
						Add FM Source		
						Add Current Source	- E	_>
			_			Add Noise Generator		
						Add Audio Input		
						Add Data Input		
						Add External Voltage (JavaScript)		
Max=2.7	783 V							
capacito	or, 33 µF				A/C source $I = 23.054$	ce 4 mA		
$/ \wedge$		(\land)	$\langle / \Lambda \rangle$		Vd = 4.27	78 V	ttps:/	'/fa
	$\nabla \mathbf{V}$	$/ \land$	χ /	$\nabla V / $	f = 40 Hz			<u> </u>
\sim					Vmax = 5 V(rms) =	5 V 3.536 V		

/falstad.com/circuit/circuitjs.html

How to edit values of electrical circuit???

How to download standalone(offline) version?

Index of /circuit/offline

Click on circuitjs-win.zip file and download it.

https://www.falstad.com/circuit

To save a circuit that you have made go:

File > Export > (Copy the code in the export box) > (Paste into a .txt document or similar) > Save the code.

When loading a circuit:

Find the .txt (Or similar file) >
Copy the code > (File > Import)
> If there is any code in the
import box, clear it and paste
your code into that box.

New Text Document.txt

	Expo	ort as	Text								
	Text f	ile for	this o	circuit	is						
	\$ 1 0 w 96 r 176 162 0 w 96 v 96 o 2 6 o 1 6	0.000 96 1 396 3 336 9 256 3 96 96 34 0 4 34 0 4	005 20 76 96 36 96 336 2 336 2 5 256 099 5 099 0	6.595 0 10 256 56 0 0 0 4 5 0.00	66520 2 defa 0 5 0 0 00976 07629	063155 ault-led 0 0.5 5625 (39453	3 77 9 1 0 0 0 2 2 3 125 0.	5 50 5 0.01	e-11	25 1	213
	ок]	Сор	y to C	Clipboa	ard					I
). D (defau	t-led)				resis	tor, 1 k	Ω			
*						*					

BASIC CIRCUITS

Let's Try

RESISTOR

CAPACITOR

INDUCTOR

LRC CIRCUIT

VOLTAGE DIVIDER

POTENTIOMETER

OHM'S LAW

THEVENIN'S THEOREM

All many circuits!!!

Resistor-This is a java applet showing a simple resistive circuit.

https://www.falstad.com/circuit/

t = 241.48 ms time step = $5 \mu s$

Ohm's law states the relationship between electric current and potential difference. The current that flows through most conductors is directly proportional to the voltage applied to it.

Ohm's Law-This is a java applet showing a simple demonstration of <u>Ohm's</u>

<u>Law</u>.

https://www.falstad.com/circut/

HANDS-ON EXERCISE

Exercise1: Given the circuit shown in the figure:

Measure the total resistor of the circuit

- a) Do a screen capture for the circuit
- b) Calculate the voltage drop of 1 K Ω resistor
- c) Calculate the voltage drop of 10 K Ω resistor

Exercise 2:. Determine the equivalent resistor of the network in the following figure. What is the voltage drop between A and B if the ammeter shows 1 A? Also, do a screen capture for the circuit.

CONCEPTS learner can understand !!!

Oscillations and Waves

Electricity and Magnetism: Statics

Thermodynamics

Quantum Mechanics

Electrodynamics

Mechanics

G

These are some educational applets I wrote to help visualize various concepts in math, physics, and engineering. They were originally written in Java, but they've mostly been converted to avascript, so you should be able to view them without a Java-capable browser.

Oscillations and Waves

<u>Ripple Tank (2-D Waves) Applet</u> Ripple tank simulation that demonstrates wave motion, interference, diffraction, refraction, Doppler effect, etc.

<u>2-D Waves Applet</u> Demonstration of wave motion in 2-D.

<u>3-D Waves Applet</u> Demonstration of wave motion in 3-D.

Coupled Oscillations Applet Demonstration of longitudinal wave motion in oscillators connected by springs.

Dispersion Applet Dispersion and group velocity.

Acoustics

Loaded String Applet

Simulation of wave motion of a string.

Rectangular Membrane Waves Applet Vibrational modes in a 2-d membrane.

https://www.falstad.com/mathphysics.html

ELECTRIC MOTOR

	-	ð	×
Q	☆	**	:
set			
verse Battery	,		
ulation speed	1:		
net position			
p position:			
w magnetic f	field:	2	
w loop magn	ietic m	oment:	2
w magnetic f	force: l	~	
w torque: 🗹			
nmutator: 🗹			
simulation:			
animation:			

https://www.falstad.com/mathphysics.html

Electrostatics 3-D demonstration

https://www.falstad.com/mathphysics.html

electrostatics • This java applet is an demonstration which displays the electric field in a number of situations.

 You can select from a number of fields and see how particles move in the field if it is treated as either a velocity field (where the particles move along the field lines) or an actual force field (where the particles move as if they were charged particles).

• This helps you visualize the field.

Exercise- Illustrate the effect of electric field and electrostatic potential on point charge due to a dipole and do a screen capture of it.

e Charge	~	
0 ~		
otentials		
D		
0		
0		_

https://www.falstad.com/mathphysics.html

What is Algodoo?

Algodoo is a user-friendly physics simulation software that allows allows users to design and build interactive 2D worlds. This intuitive intuitive software makes it easy to create objects, apply forces, and forces, and observe the resulting motion and interactions.

Physics Sandbox Visual Programming Algodoo offers a playground for Its visual programming interface for experimenting with physical interface enables users to create physical concepts like gravity, create complex scenarios with friction, and collisions. with ease, promoting hands-on on learning.

Educational Tool

Algodoo is widely used in education to teach physics concepts and inspire and inspire creativity in students of all ages.

Key Features of Algodoo

Algodoo offers a range of features that make it a versatile and powerful tool for physics simulations and creative exploration.

Object Creation

Algodoo provides a diverse set of objects to create interactive simulations, including balls, blocks, ropes, springs, and motors.

3

Force Application

Algodoo allows users to apply forces like gravity, wind, and friction to objects, simulating realworld scenarios.

Material Properties

Users can customize material properties like density, elasticity, and friction to create realistic simulations of different materials.

2

Simulation Control

Users can control simulation speed, pause, and rewind to analyze the results and understand the physics behind the interactions.

Applying Physics Principles in Algodoo

Algodoo offers an interactive platform to explore fundamental physics principles in action.

Newton's Laws of Motion

Simulate and observe the effects of inertia, acceleration, and force on objects.

Conservation of Energy

1

2

3

4

Create simulations that demonstrate the transfer of energy between different forms, such as potential and kinetic energy.

Gravity and Friction

Explore the influence of gravity and friction on the motion and interactions of objects.

Collisions and Momentum

Investigate the impact of collisions on objects and the conservation of momentum.

http://www.algodoo.com/download/

File O 🖸 🖻 ?

Algodoo for Education

TOP MENU

Change language, Toggle fullscreen, Open options, Hide windows, Run tutorials and much more.

1 \$

24 %

n 👬

BROWSER Browse & Save scenes. Find & Share scenes online. Drog & Drop components.

TOOLBAR Tools for Drawing, Editing and Interact with your scenes.

TOOL OPTIONS Options for the selected tool. Welcome! Helio, and welcome to Algodoo! Tutorials Setup Set language and the Learn the basics of Use Algodoo as a Algodoo look and feel Algodoo in a minute

Do not show this message again

Select by encircling

? Sketch

Source: http://www.algodoo.com/

teaching aid

PROPERTIES Set material and color.

RIGHT-CLICK (or DOUBLE-CLICK) Make water, Clone, Show info, Add mechanics, etc.

ENVIRONMENT Turn on/off Gravity, Air friction and Background grid.

ecure algodoo.com/lessons/Algodoo-_Motion

HANDS-ON EXAMPLE LESSON 1-MOTION

algoryx							
	Home	Download	What is it?	Lea			
A	LOG IN						

MOTION	
LANGUAGE:	English
DESCRIPTION:	Motion is a fundamental concept in science. This less drop (gravity), and also introduces the term force.
TARGET:	Key Stage 1, Key Stage 2
CATEGORY:	Demonstration, Exercise, Laboratory
DISCIPLINE:	Static forces, Dynamic forces, Gravity, Motion
LEARNING OBJECTIVES:	Knowing different ways of setting an object into moti terms of influence of a force. Knowing about the rela
IN CLASS:	Discuss what causes an object to move. Let the stud- and list them on the whiteboard. For example pushin
	Discuss that the cause of motion is called force. Disc

Discuss how this can be visualized and explored in Algodoo. Let the students create scenes in Algodoo using the suggestions you came up with together or let them use their own ideas. Help the students make decisions and ask guiding questions.

relation between speed, distance and time.

arn it	Algobox	Forum					
	Aigobox						
		Search					
	T	RANSLATE/COPY	EDIT				
son explores different causes of motion, such as pull, push,							
ion. Knowing	a cause of motion (pu	ısh, pull, drop, slide)	in				
ation betweer	n speed, distance and t	time.					
ents suggest	t different ways of setti	ing an object into mo	tion				
ng, pulling, tł	hrowing, dropping, slid	ing, adding a motor.					
uss how the	size of the force influe	nces the motion. Dis	cuss				
lgodoo. Let t	he students create sce	enes in Algodoo using	the				
ico thoir owr	ideas Holp the stude	nte mako docisione a	nd pole				

☆

algodoo.com/lessons/Algodoo-_Motion cure

What behaviour is observed with the different wheel shapes? How long do they roll?

				_					
	Visualizatior	n		×					
	Fit arrows to se	creen			2				
	Show names	🖌 Sho	w values		•				
	Show compor	nents 😽 Sho	w angles						
	Forces Velocities Momentums Other								
1.92 N	Here you can choose to visualize the forces that								
	View forces								
	Improve arro physics solve when showin	w stability. Wi r will behave s ig force arrows	th this on, the slightly different s.	ly					
	Force arrows so	cale: 0.080	m/N						
o 🛛	Select forces to v	view:							
	🔲 Total	Σ							
	🗹 Gravity	mg	🖌 Attraction	G					
	🖌 Spring	spring	🖌 Axle	A					
	🖌 Torque	T	🖌 Normal	N					
0	Friction	T	Air friction	air friction					
	Air buoyancy	air lift	🖌 Chain	с					
	Controller	ext	🖌 Thruster	ext					
	Check all Ur	ncheck all							
2 N									

5

1 m

THANK YOU

